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ABSTRACT: From the perspective of surface modification of biomaterials, graphene is
very promising because of its unique physical and chemical properties. Herein, we report
direct in situ fabrication of graphene on nitinol (NiTi) shape memory alloy by chemical
vapor deposition (CVD) and investigate both the growth mechanism as well as surface
bioactivity of the modified alloy. Growth of the graphene layer is independent of Ni but is
rather correlated with the formation of the TiC phase on the surface. Graphene nucleates
and grows on this carbide layer during exposure to CH4. The graphene layer is observed to
promote the osteogenesis differentiation of mesenchymal stem cells and surface bioactivity.
The use of graphene as a bioactive layer is a viable approach to improving the surface
properties of NiTi-based dental and orthopedic implants and components.
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The biocompatibility of NiTi shape memory alloys (SMA)
is crucial to biomedical implants and components such as

self-expandable cardiovascular stents, stone extraction baskets,
catheter guide wires, and orthopedic implants and can be
achieved by forming biocompatible phases on the surface and
preventing Ni out-diffusion in vivo.1,2 Since its discovery,
graphene has attracted tremendous attention3,4 in many areas
including biomedical engineering, especially as an osteogenic
inducer for bone regeneration. In spite of recent investigations
on the biocompatibility and osteogenesis activity of graphene,5,6

exploitation of graphene-based materials in bone regeneration
still faces scientific and technical challenges. For instance, the
graphene films are free-standing or transferred from other
substrates thereby limiting application to hard tissue regener-
ation. To overcome this hurdle, direct large-area fabrication of
graphene on biomedical alloys such as NiTi is a good means to
retain the favorable mechanical attributes of the bulk materials
while taking advantage of the biocompatibility of graphene.
Graphene can be prepared on Ni7 as well as other binary

alloys such as NiCu,8 NiAu,9 and NiMo10 via a carbon
dissolution-segregation mechanism. However, direct growth of
graphene on NiTi alloys has seldom been reported, although
NiTi alloys with the unique shape memory and superelastic
properties are very attractive to biomedical applications. Herein,
we report the direct fabrication of graphene on NiTi by

chemical vapor deposition (CVD) to promote the osteogenesis
differentiation of mesenchymal stem cells and surface
bioactivity.
The fabrication process of graphene is summarized in Figure

1a. A circular NiTi disc with a Ni concentration of 50.8 at %
and thickness of 1 mm is annealed at different temperature
between 950 and 1050 °C in a CVD chamber under Ar and
CH4 (Table 1). The pristine NiTi is prepolished to a shiny
surface texture (Figure 1b) and Figure 1c−e show that by
controlling the CVD conditions, graphene can be fabricated
uniformly on NiTi as a “wormlike” interconnected structure.
The influence of the fabrication temperature is explored. At 950
°C, a wormlike texture emerges. The 2D and G peaks typical of
graphene appear in conjunction with a defect-related D peak
(Figure 1f). When the growth temperature is elevated to 1050
°C, the wormlike texture becomes clearer (Figure 1e) and the
graphene crystalline improves as indicated by the attenuated D
peak (Figure 1f). To evaluate the uniformity and coverage of
graphene layer, we analyzed 25 points on the sample by Raman
scattering and the IG/ID ratio maps are depicted in Figures 1g−
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i. With regard to the graphene prepared at 950 °C, the IG/ID
ratios calculated from the 25 points are very similar varying
between 0.64 and 0.74, indicating that the graphene layer is
quite uniform on this scale. A higher temperature facilitates
nucleation and growth of graphene giving rise to a larger grain
size and better crystalline quality (Table S1). As a result, the
IG/ID ratios increase to 1.30−1.41. The improved crystalline
quality is confirmed by selected-area electron diffraction
(SAED) showing the transformation of a ring to spot pattern
with temperature (Figure 1j−l). The correlation between the
fabrication temperature and crystalline quality is well-
demonstrated by the properties of intermediate graphene
prepared at 1000 °C. The wormlike texture is assumed to stem

from graphene in lieu of NiTi because no wormlike texture is
observed from NiTi while controlling the gas composition
during CVD (Table S1) as shown in Figure S1. Direct large-
area fabrication of graphene on NiTi obviates the need for a
transferring process, boding well for clinical application to
orthopedics and bone regeneration.
To elucidate the mechanism of graphene growth on NiTi,

the elemental depth profile, chemical states, and phase
composition are investigated by XPS and XRD. As shown in
Figure 2a, the NiTi alloy forms a native TiO2 surface layer upon
exposure to air.2 O2 reacts with Ti in NiTi to form a thin TiO2

layer depleted with Ni consistent with theoretical simulation.11

According to thermodynamics (Supporting Information),
during CH4 exposure, NiTi dealloys to form Ti and Ni phases
(NiTi(s) → Ni(s) + Ti(s)). Ti reacts with CH4 to form TiC
due to the higher affinity of titanium to carbon than nickel and
the TiO2 phase is converted to TiC phase, (CH4(g) + Ti(s) →
TiC(s) + 2H2 ;3CH4(g) + TiO2(s) → TiC(s) + 6H2(g) +
2CO(g)), as shown by the XRD patterns. TiC formation
depletes Ni from the surface and “snow ploughs” Ni into the

Figure 1. (a) Schematic illustration of the preparation of a large-area graphene layer on NiTi by CVD; surface morphology of the (b) NiTi control
and graphene samples prepared at (c) 950, (d) 1000, and (e) 1050 °C; (f) Raman spectra and mappings of the graphene layer grown on NiTi for (g)
950, (h) 1000, and (i) 1050 °C; TEM results of the graphene layer transferred from the NiTi foil for (j) 950, (k) 1000, and (l) 1050 °C.

Table 1. Important Instrumental Conditions in the CVD
Process for the Fabrication of Graphene on NiTi Alloy

samples T (°C) argon (sccm) CH4 (sccm)

Gr@NiTi-950 950 200 20
Gr@NiTi-1000 1000 200 20
Gr@NiTi-1050 1050 200 20
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NiTi substrate underneath the TiC layer (Figure 2b−d). A
higher temperature expedites the process and Ni segregation
behavior has also been observed from C2H2/O2/N2-implanted
NiTi.12−15 The sp3-bonded C 1s peak (285.2 eV) gradually
disappears and is replaced by the sp2-bonded C 1s peak from
graphene (284.4 eV) (Figure 3a−d). The peak at 281.6 eV is
the C 1s peak of TiC.16 As the fabrication temperature goes up,
the Ti 2p doublets of TiO2 (464.4 and 458.8 eV) shift to 455.1
and 461.1 eV (Figure 3e−h) indicating the formation of a TiC
layer on NiTi. As shown in Figure 3i, the untreated NiTi is
consisted of austenite and martensite phases with a diffraction
peak attributed to rutile TiO2, keeping stable even at 950 °C
(Figure 3j).17 After CVD, the peak of rutile TiO2 disappears
gradually while the peaks of TiC at 35.9, 60.4, 72.4, and 76.1°,
corresponding to the (111), (220), (311), and (222) planes,
respectively, emerge (Figure 3j−l).18 The samples prepared
under other conditions (Figures S2−S5) reveal the similar
change in the surface states. The XRD and XPS are consistent.
The surface TiC layer constitutes a good barrier mitigating Ni
out-diffusion (Figure S6).
Depletion of Ni from the surface rules out the possibility of

the carbon dissolution-segregation mechanism on Ni7 and
other binary alloys like NiCu,8 NiAu,9 and NiMo.10 The
absence of a Ni-carbide phase also excludes graphene growth
from Ni-carbide such as Ni2C.

19 Graphene can be grown on
bulk carbides of transition metals by CVD, for instance, bulk
TaC and WC.20,21 Here, the growth of graphene is believed to
be closely associated with the TiC layer on NiTi. When NiTi is
exposed to CH4, a layer of TiC forms on the surface. This
chemically and thermally stable carbide phase tends to suppress
graphene nucleation and the graphene growth competes with
surface TiC formation at low temperature mainly due to the
fairly high C solubility of Ti and strong interactions between C
and Ti atoms.22 Density functional theory (DFT) investigation
discloses that the coexistence of carbide and graphene phases is
thermodynamically stable, even in the absence of an additional

carbon source such as C2H4 and CH4.
19 Based on these

considerations, optimizing the CVD conditions like increasing
the annealing temperature and adding extra carbon sources may
facilitate graphene nucleation and growth. Indeed, in the
investigation of graphene growth on bulk carbide monocrystals
such as HfC, TaC, and TiC, epitaxial growth of graphene is
observed to depend on the crystalline plane of the transition-
metal carbides.23,24 That is, single-layer graphene can be
prepared epitaxially on the (111) surface of these bulk carbides,
but not as easily on the (001) surface on which bilayered/
multilayered graphene may be formed. In the present work,
upon CH4 exposure and thermal decomposition, a surface TiC
phase forms initially on NiTi with the (111), (220), (311), and
(222) planes with the (111) plane playing a key role in the
epitaxial growth, whereas graphene is not readily formed on the
(220) and (311) planes (or bilayered/multilayered graphene is
formed). The formation mechanism of graphene on the (111),
(220), and (311) planes are different, thus explaining the
observed wormlike morphology. During annealing at the
optimal temperature of 1050 °C, the composite effects
rendered by diffusion and bond formation produce the optimal
phase of TiC facilitating graphene growth on NiTi. Single-layer
graphene has also been produced on the (111) surface of TiC
during reaction with C2H4 at 1100 °C.24 The similar annealing
temperature and absence of H2 during CVD support the
proposed mechanism which may be applicable to other TiNi-
based shape memory alloys including TiNiMo, TiNiFe, and
TiNiNb.
Mesenchymal stem cells (MSCs) are seeded to evaluate the

surface biological activity of the graphene-modified NiTi. All
the samples support the proliferation of MSCs with a steady
upward trend (Figure S7). Figure 4a−d shows the expression
levels of osteogenic-related genes (OCN, OPN, BMP-2 and
Runx2) revealing significant up-regulation on graphene
compared to the NiTi control, especially Gr@NiTi-1050,
indicating ongoing osteogenesis of the MSCs and differ-

Figure 2. XPS elemental depth profiles of Ni, C, Ti, and O: (a) NiTi, (b) Gr@NiTi-950, (c) Gr@NiTi-1000, and (d) Gr@NiTi-1050.
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entiation toward osteoblasts. The enhanced OCN expression is
confirmed by immunofluorescence at the protein level, as
shown in Figure 4e. Meanwhile, ALP staining shows more
ALP-positive areas on graphene, especially Gr@NiTi-1050,
based on the semiquantification expression (Figure S8).
Besides, compared to the sample NiTi, the graphene overlayers
can better promote the expression of integrin β1 (stained in
red) and initial adhesion (actin, stained in green) of the MSCs
(Figure 4f), presumably consistent with the enhanced osteo-
genesis function.25 Thus, the graphene on NiTi provides an
overlayer for its surface bioactivation.26 It is expected that the

osteogenesis inducibility of graphene layer correlates with its
defect state. In other words, the higher quality graphene layer
on surface has a better promotion effect on osteogenesis than
the lower quality one. Having a large area and purely carbon
aromatic network, the high-quality graphene layer can provide
an open surface for the noncovalent interactions with
biomolecules contributed by the π−π bond. The π−π stacking
can enhance serum protein adsorption, inducer loading, etc., on
the surface of graphene layer when culturing MSCs in medium
and promote the interactions between cell membrane and
graphene layer.27,28 On the contrary, the defect states of

Figure 3. High-resolution XPS spectra of (a−d) C 1s and (e−h) Ti 2p peaks obtained from the surfaces of samples NiTi, Gr@NiTi-950, Gr@NiTi-
1000, and Gr@NiTi-1050 together with (i−l) the corresponding surface phase composition and development.
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graphene layer would interrupt the π−π bond to some extent,
which thus results in the low degree of π−π stacking and
electrostatic bonding.29 For instance, CVD-grown graphene
showed a better osteogenesis enhancement than chemically
derived graphene oxide, originating from the stronger non-
covalent binding ability of the former.30 Considering the
increase of surface hydrophobility (Figure S9) against cell
adhesion,5,26,27 it is inferred that the observed promotion of
graphene overlayer on the initial adhesion and osteogenic
activity of MSCs mainly originates from the synergistic effect
exerted by the wormlike surface topography and the defect-
dependent π−π stacking. Since graphene materials have
showing great promise for dental and orthopedic applications,
the direct growth of graphene on NiTi reported here enables
convenient and viable surface functionalization of NiTi-based
alloys to enhance the bioactivity to better meet clinical needs.
In conclusion, a strategy to functionalize NiTi alloy by direct

fabrication of graphene in situ by CVD method in order to
enhance the bioactivity. The graphene-functionalized NiTi
shows better MSCs cytoskeleton development and sponta-
neous osteogenic differentiation. A higher fabrication temper-
ature improves the crystalline quality of graphene and surface
bioactivity. The technique and materials have large potential in
dental and orthopedic applications and can be readily extended
to other biomedical alloys.
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